Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wolfe, Kenneth (Ed.)Abstract The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Although loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49/52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between five and 21 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with higher levels of MMR gene loss exhibit increased numbers of mononucleotide runs, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms.more » « less
-
In recent years, obesity has reached epidemic proportions globally and has become a major public health concern. The development of obesity is likely caused by several behavioral, environmental, and genetic factors. Genomic variability among individuals is largely due to copy number variations (CNVs). Recent genome-wide association studies (GWAS) have successfully identified many loci containing CNV related to obesity. These obesity-related CNVs are informative to the diagnosis and treatment of genomic diseases. A more comprehensive classification of CNVs may provide the basis for determining how genomic diversity impacts the mechanisms of expression for obesity in children and adults of a variety of genders and ethnicities. In this review, we summarize current knowledge on the relationship between obesity and the CNV of several genomic regions, with an emphasis on genes at the following loci: 11q11, 1p21.1, 10q11.22, 10q26.3, 16q12.2, 16p12.3, and 4q25.more » « less
An official website of the United States government
